4.4 Article

Cornea-responsive medullary dorsal horn neurons: Modulation by local opioids and projections to thalamus and brain stem

Journal

JOURNAL OF NEUROPHYSIOLOGY
Volume 84, Issue 2, Pages 1050-1061

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.2000.84.2.1050

Keywords

-

Funding

  1. NINDS NIH HHS [NS-26137] Funding Source: Medline

Ask authors/readers for more resources

Previously, it was determined that microinjection of morphine into the caudal portion of subnucleus caudalis mimicked the facilitatory effects of intravenous morphine on cornea-responsive neurons recorded at the subnucleus interpolaris/caudalis (Vi/Vc) transition region. The aim of the present study was to determine the opioid receptor subtype(s) that mediate modulation of corneal units and to determine whether opioid drugs affected unique classes of units. Pulses of CO2 gas applied to the cornea were used to excite neurons at the Vi/Vc (rostral neurons) and the caudalis/upper cervical spinal cord transition region (Vc/C1, caudal neurons) in barbiturate-anesthetized male rats. Microinjection of morphine sulfate (2.9-4.8 nmol) or the selective mu receptor agonist D-Ala, N-Me-Phe, Gly-ol-enkephalin (DAMGO; 1.8-15.0 pmol) into the caudal transition region enhanced the response in 7 of 27 (26%) rostral units to CO2 pulses and depressed that of 10 units (37%). Microinjection of a selective delta {[D-Pen(2,5)] (DPDPE); 24-30 pmol} or kappa receptor agonist (U50488; 1.8-30.0 pmol) into the caudal transition region did not affect the CO2-evoked responses of rostral units. Caudal units were inhibited by local DAMGO or DPDPE but were not affected by U50,488H. The effects of DAMGO and DPDPE were reversed by naloxone (0.2 mg/kg iv). Intravenous morphine altered the CO2-evoked activity in a direction opposite to that of local DAMGO in 3 of 15 units, in the same direction as local DAMGO but with greater magnitude in 4 units, and in the same direction with equal magnitude as local DAMGO in 8 units. CO2-responsive rostral and caudal units projected to either the thalamic posterior nucleus/zona incerta region (PO/ZI) or the superior salivatory/facial nucleus region (SSN/VII). However, rostral units not responsive to CO2 pulses projected only to SSN/VII and caudal units not responsive to CO2 projected only to PO/ZI. It was concluded that the circuitry for opioid analgesia in corneal pain involves multiple sites of action: inhibition of neurons at the caudal transition region, by intersubnuclear connections to modulate rostral units, and by supraspinal sites. Local administration of opioid agonists modulated all classes of corneal units. Corneal stimulus modality was predictive of efferent projection status for rostral and caudal units to sensory thalamus and reflex areas of the brain stem.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available