4.7 Article

Steady free-surface thin film flows over topography

Journal

PHYSICS OF FLUIDS
Volume 12, Issue 8, Pages 1889-1898

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.870438

Keywords

-

Ask authors/readers for more resources

We consider the slow motion of a thin viscous film flowing over a topographical feature (trench or mound) under the action of an external body force. Using the lubrication approximation, the equations of motion simplify to a single nonlinear partial differential equation for the evolution of the free surface in time and space. It is shown that the problem is governed by three dimensionless parameters corresponding to the feature depth, feature width and feature steepness. Quasi-steady solutions for the free surface are reported for a wide range of these parameters. Our computations reveal that the free surface develops a ridge right before the entrance to the trench or exit from the mound and that this ridge can become large for steep substrate features of significant depth. Such capillary ridges have also been observed in the contact line motion over a planar substrate where the buildup of pressure near the contact line is responsible for the ridge. For flow over topography, the ridge formation is a manifestation of the effect of the capillary pressure gradient induced by the substrate curvature. In addition, the minimum film thickness is always found near the concave corner of the feature. Both the height of the ridge and the minimum film thickness are found to be strongly dependent on both the profile depth and steepness. Finally, it is found that either finite feature width or a significant vertical component of gravity can suppress these effects in a way that is made quantitative and which allows the operative physical mechanism to be explained. (C) 2000 American Institute of Physics. [S1070-6631(00)00908-9].

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available