4.7 Article

Perturbation in Mitochondrial Network Dynamics and in Complex I Dependent Cellular Respiration in Schizophrenia

Journal

BIOLOGICAL PSYCHIATRY
Volume 69, Issue 10, Pages 980-988

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.biopsych.2011.01.010

Keywords

Antipsychotic drugs; bipolar disorder; dopamine; mitochondrial network dynamics; mitochondrial respiration; schizophrenia

Funding

  1. Ministry of Health Israel

Ask authors/readers for more resources

Background: Mitochondria have been suggested to be involved in the pathology of bipolar disorder (BD) and schizophrenia. However, the mechanism underlying mitochondrial dysfunction is unclear. Mitochondrial network dynamics, which reflects cellular metabolic state, is important for embryonic development, synapse formation, and neurodegeneration. This study aimed to investigate mitochondrial network dynamics and its plausible association with abnormal cellular oxygen consumption in schizophrenia. Methods: Viable Epstein-Barr virus (EBV)-transformed lymphocytes (lymphoblastoids) from DSM-IV diagnosed patients with schizophrenia (n = 17), BD (n = 15), and healthy control subjects (n = 15) were assessed for mitochondrial respiration, mitochondrial dynamics, and relevant protein levels by oxygraph, confocal microscopy, and immunoblotting, respectively. Results: Respiration of schizophrenia-derived lymphoblastoids was significantly lower compared with control subjects, and was twice as sensitive to dopamine (DA)-induced inhibition. Unlike DA, haloperidol inhibited complex I-driven respiration to a similar extent in both schizophrenia and the control cells. Both drugs interact with complex I but at different sites. At the site of DA interaction, we found alterations in protein levels of three subunits of complex I in schizophrenia. In addition, we observed structural and connectivity perturbations in the mitochondrial network, associated with alterations in the profusion protein OPA1, which was similarly reduced in schizophrenia prefrontal cortex specimens. None of these alterations were observed in the BD cells, which were similar to control cells. Conclusions: We show impaired mitochondrial network dynamics associated with reduced cellular respiration and complex I abnormalities in schizophrenia but not in BD. If these findings represent disease-specific alterations, they may become an endophenotype biomarker for schizophrenia.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available