4.2 Article

Photoperiod and temperature interact to affect the GnRH neuronal system of male prairie voles (Microtus ochrogaster)

Journal

JOURNAL OF BIOLOGICAL RHYTHMS
Volume 15, Issue 4, Pages 306-316

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1177/074873000129001413

Keywords

seasonal; reproduction; testosterone; day length; gonad; arvicoline; rodent

Funding

  1. NIMH NIH HHS [MH57535] Funding Source: Medline

Ask authors/readers for more resources

Individuals of numerous species limit energy expenditure during winter by inhibiting reproduction and other nonessential functions. To time these adaptations appropriately with the annual cycle, animals rely on environmental cues that predict, well in advance, the onset of winter. The most commonly studied environmental factor that animals use to time reproduction is photoperiod. Rodents housed in short photoperiods in the laboratory or in naturally declining day lengths exhibit pronounced alterations in reproductive function concomitant with alterations in the hypothalamic gonadotropin-releasing hormone neuronal system. Because animals in their natural environment use factors in addition to photoperiod to time reproduction, the present study sought to determine the independent effects of photoperiod and temperature, as well as the interaction between these factors, on reproductive parameters and the GnRH neuronal system. Male prairie voles were housed in either long (LD 16:8) or short (LD 8:16) day lengths for 10 weeks. Animals in each photoperiod were further subdivided into groups housed in either mild (i.e., 20 degrees C) or low (i.e., 8 degrees C) temperatures. As shown with immunohistochemistry, voles that underwent gonadal regression in response to short photoperiods and long-day voles housed in low temperatures land maintained large gonads) exhibit higher GnRH-immunoreactive (GnRH-ir) neuron numbers in the preoptic area/anterior hypothalamus (POA/AH) relative to all other groups. In addition, voles that underwent gonadal regression in response to both short days and low temperatures did not exhibit an increase in GnRH-ir neuron numbers compared to long-day, mild-temperature controls. These data suggest that photoperiod and temperature interact to influence reproductive function potentially by alterations of the GnRH neuronal system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available