4.4 Article

Global adaptations resulting from high population densities in Escherichia coli cultures

Journal

JOURNAL OF BACTERIOLOGY
Volume 182, Issue 15, Pages 4158-4164

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.182.15.4158-4164.2000

Keywords

-

Categories

Ask authors/readers for more resources

The scope of population density effects was investigated in steady-state continuous cultures of Escherichia coli in the absence of complications caused by transient environmental conditions and growth rates. Four distinct bacterial properties reflecting major regulatory and physiological circuits were analyzed. The metabolome profile of bacteria growing at high density contained major differences from low-density cultures. The 10-fold-elevated level of trehalose at higher densities pointed to the increased role of the RpoS sigma factor, which controls trehalose synthesis genes as well as the general stress response. There was an eightfold difference in RpoS levels between bacteria grown at 10(8) and at 10(9) cells/ml. In contrast, the cellular content of the DNA binding protein H-NS, controlling many genes in concert with RpoS, was decreased by high density. Since H-NS and RpoS also influence porin gene expression, the influence of population density on the intricate regulation of outer membrane composition was also investigated. High culture densities were found to strongly repress ompF porin transcription, with a sharp threshold at a density of 4.4 x 10(8) cells/ml, while increasing the proportion of OmpC in the outer membrane. The density-dependent regulation of ompF was maintained in rpoS or hns mutants and so was independent of these regulators. The consistently dramatic changes indicate that actively growing, high-density cultures are at least as differentiated from low-density cultures as are exponential- from stationary-phase bacteria.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available