4.7 Article

Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer's disease

Journal

JOURNAL OF NEUROSCIENCE
Volume 20, Issue 15, Pages 5709-5714

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.20-15-05709.2000

Keywords

inflammation; cytokines; microglia; amyloid; Alzheimer; NSAID

Categories

Funding

  1. NCCIH NIH HHS [R01 AT003008] Funding Source: Medline
  2. NIA NIH HHS [AG15453, AG13471, R01 AG013741, P50 AG016570, R01 AG010685] Funding Source: Medline

Ask authors/readers for more resources

The brain in Alzheimer's disease (AD) shows a chronic inflammatory response characterized by activated glial cells and increased expression of cytokines and complement factors surrounding amyloid deposits. Several epidemiological studies have demonstrated a reduced risk for AD in patients using nonsteroidal anti-inflammatory drugs (NSAIDs), prompting further inquiries about how NSAIDs might influence the development of AD pathology and inflammation in the CNS. We tested the impact of chronic orally administered ibuprofen, the most commonly used NSAID, in a transgenic model of AD displaying widespread microglial activation, age-related amyloid deposits, and dystrophic neurites. These mice were created by overexpressing a variant of the amyloid precursor protein found in familial AD. Transgene-positive (Tg+) and negative (Tg-) mice began receiving chow containing 375 ppm ibuprofen at 10 months of age, when amyloid plaques first appear, and were fed continuously for 6 months. This treatment produced significant reductions in final interleukin-1 beta and glial fibrillary acidic protein levels, as well as a significant diminution in the ultimate number and total area of beta-amyloid deposits. Reductions in amyloid deposition were supported by ELISA measurements showing significantly decreased SDS-insoluble A beta. Ibuprofen also decreased the numbers of ubiquitin-labeled dystrophic neurites and the percentage area per plaque of antiphosphotyrosine-labeled microglia. Thus, the anti-inflammatory drug ibuprofen, which has been associated with reduced AD risk in human epidemiological studies, can significantly delay some forms of AD pathology, including amyloid deposition, when administered early in the disease course of a transgenic mouse model of AD.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available