4.7 Article

Vapor nucleation and droplet growth: Cluster distribution kinetics for open and closed systems

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 228, Issue 1, Pages 64-72

Publisher

ACADEMIC PRESS INC
DOI: 10.1006/jcis.2000.6927

Keywords

nucleation; droplet growth; distribution kinetics; molecular clusters; heterogeneous nucleation; vapor-liquid equilibrium

Ask authors/readers for more resources

A theory based on cluster distribution kinetics for single-monomer addition and dissociation is presented as a framework for homogeneous and heterogeneous vapor nucleation and growth dynamics. For continuous cluster and monomer distributions in a well-mixed non-steady-state flow system, population (mass) balance equations yield moment equations for the cluster mass moments. Nuclei are either homogeneously generated or heterogeneously seeded, and subsequent cluster growth occurs by reversible condensation of vapor monomers. The zeroth moment is the number (or moles) of clusters, the first moment is cluster mass, and the second moment gives cluster-size variance. Solutions are proposed for steady-state flow (open) and non-steady-state batch (closed) systems. Experimental data are interpreted by recognizing that droplets typically observed in nucleation experiments have grown much larger than their nuclei. This allows resolution of the large temperature-dependent discrepancy between experiment and classical nucleation theory. (C) 2000 Academic Press.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available