4.5 Article

Characterization of single actomyosin rigor bonds: Load dependence of lifetime and mechanical properties

Journal

BIOPHYSICAL JOURNAL
Volume 79, Issue 2, Pages 962-974

Publisher

BIOPHYSICAL SOCIETY
DOI: 10.1016/S0006-3495(00)76350-8

Keywords

-

Categories

Ask authors/readers for more resources

Load dependence of the lifetime of the rigor bonds formed between a single myosin molecule (either heavy meromyosin, HMM, or myosin subfragment-1, S1) and actin filament was examined in the absence of nucleotide by pulling the barbed end of the actin filament with optical tweezers. For S1, the relationship between the lifetime (tau) and the externally imposed load (F) at absolute temperature T could be expressed as tau(F) = tau(0).exp(-F.d/k(B)T) with tau(0) of 67 s and an apparent interaction distance d of 2.4 nm (k(B) is the Boltzmann constant). The relationship for HMM was expressed by the sum of two exponentials, with two sets of tau(0) and d being, respectively, 62 s and 2.7 nm, and 950 s and 1.4 nm. The fast component of HMM coincides with tau(F) for S1, suggesting that the fast component corresponds to single-headed binding and the slow component to double-headed binding. These large interaction distances, which may be a common characteristic of motor proteins, are attributed to the geometry for applying an external load. The pulling experiment has also allowed direct estimation of the number of myosin molecules interacting with an actin filament. Actin filaments tethered to a single HMM molecule underwent extensive rotational Brownian motion, indicating a low torsional stiffness for HMM. From these results, we discuss the characteristics of interaction between actin and myosin, with the focus on the manner of binding of myosin.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available