4.5 Article

A finite element method for the determination of space charge distributions in complex geometry

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/94.868077

Keywords

-

Ask authors/readers for more resources

Electrical breakdown in insulators very often initiate near high field regions of the structure, as found near small-radius impurities or at electrode defects. This is attributed to the development of localized space charges. For this reason many efforts have been made to determine such charge. Various techniques are now available, but they are not directly applicable to complex geometries where it is difficult to determine analytically the field configuration and thus the relation between the measured variables and the space charge distribution. To solve this problem, we propose to use a numerical simulation using a finite element method (FEM). In this paper we describe how it can be implemented in the case of the pressure wave propagation (PWP) method. It is shown that measured signals in insulating samples with divergent electric field regions are well fitted by simulations. We show that this allows for the determination of space charge distribution in such samples.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available