4.7 Article

Model study of a shoreline wave-power system

Journal

OCEAN ENGINEERING
Volume 27, Issue 8, Pages 801-821

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0029-8018(99)00028-1

Keywords

wave energy; hydraulic model; amplification coefficient; oscillating water column

Ask authors/readers for more resources

A wave-power system which combines the concept of a breakwater and a harbor resonance chamber was developed in this study. In the caisson chamber, a multi-resonant oscillating water column (MOWC) was formed to push or suck air through the air turbine and thus continuously generated the power. The proposed wave-power system has two aims in mind: one is shore protection and the other is to extract energy from the ocean. To achieve an optimal effect of harbor resonance when excited by incident waves of various periods, a 60 degrees opening of the cylindrical chamber with an entrance section and an are-shaped curve board in front of the caisson was designed. In order to assess the energy-conversion efficiency and the hydraulic performance, a 1/20 model of this system was constructed and tested in the wave tank under various wave conditions. Our experimental data for the amplification factor of the MOWC agree well with previous theoretical results [Lee, J.J., 1971. Journal of Fluid Mechanics 45, 375-394]. The curve board proves to be useful: it not only broadens the resonant period but also increases the energy-extraction rate. The reflection coefficient was found to be generally low and to decrease with increasing wave height. However, due to the relatively high energy loss of the MOWC, only 28.5% of the incident-wave energy was converted into air energy, indicating that there are still areas for further improvement. In any event, the experimental results provided a clear picture of the energy-transformation process, and demonstrated the preliminary feasibility of this wave-energy device. (C) 2000 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available