4.7 Article

On the prediction of gas-solid flows with two-way coupling using large eddy simulation

Journal

PHYSICS OF FLUIDS
Volume 12, Issue 8, Pages 2080-2090

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.870453

Keywords

-

Ask authors/readers for more resources

The purpose of this paper is to examine the feasibility of large eddy simulation (LES) for predicting gas-solid flows in which the carrier flow turbulence is modified by momentum exchange with particles. Several a priori tests of subgrid-scale (SGS) turbulence models are conducted utilizing results from direct numerical simulation (DNS) of a forced homogeneous isotropic turbulent flow with the back effect of the particles modeled using the point-force approximation. Properties of the subgrid-scale field are computed by applying Gaussian filters to the DNS database. Similar to the behavior observed in single-phase flows, a priori test results show that, while the local energy flux is inaccurately estimated, the overall SGS dissipation is reasonably predicted using the conventional Smagorinsky model and underestimated using the Bardina scale-similarity model. Very good agreement between model predictions and DNS results are measured using closures whose coefficients are computed using the resolved field, the so-called dynamic subgrid models, with the mixed model yielding more accurate predictions than the dynamic Smagorinsky model. A priori test results are then confirmed in actual LES calculations used to investigate the sensitivity of the predictions to mesh refinement. The LES was performed at infinite turbulent Reynolds number and for a range of particle response times and mass loadings. Grid resolution in the LES was varied from 32(3) to 96(3) collocation points, with particle sample sizes of 885 000 for each response time. LES predictions of the flow with two-way coupling are independent of mesh refinement when using the dynamic mixed model and when the particle relaxation time becomes larger than the characteristic time scale of the unresolved fluid turbulent field. (C) 2000 American Institute of Physics. [S1070-6631(00)01808-0].

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available