4.6 Article

Timescales of disk evolution and planet formation:: HST, adaptive optics, and ISO observations of weak-line and post-T Tauri stars

Journal

ASTRONOMICAL JOURNAL
Volume 120, Issue 2, Pages 950-962

Publisher

UNIV CHICAGO PRESS
DOI: 10.1086/301483

Keywords

circumstellar matter; open clusters and associations : individual (Scorpius-Centaurus, Chamaeleon); planetary systems; stars : low-mass, brown dwarfs; stars : pre-main-sequence

Ask authors/readers for more resources

We present high spatial resolution HST and ground-based adaptive optics observations and high-sensitivity ISO (ISOCAM & ISOPHOT) observations of a sample of X-ray selected weak-line (WTTS) and post- (PTTS) T Tauri stars located in the nearby Chamaeleon T and Scorpius-Centaurus OB associations. HST/NICMOS and adaptive optics observations aimed at identifying substellar companions (young brown dwarfs) at separations greater than or equal to 30 AU from the primary stars. No such objects were found within 300 AU of any of the target stars, and a number of faint objects at larger separations can very likely be attributed to a population of field (background) stars. ISOCAM observations of 5 to 15 Myr old WTTSs and PTTSs in ScoCen reveal infrared excesses which are clearly above photospheric levels and which have a spectral index intermediate between that of younger (1 to 5 Myr) T Tauri stars in Chamaeleon and that of pure stellar photospheres. The difference in the spectral index of the older PTTSs in ScoCen compared with the younger classical and weak-line TTSs in Cha can be attributed to a deficiency of smaller size (0.1 to 1 mu m) dust grains relative to larger size (approximate to 5 mu m) dust grains in the disks of the PTTSs. The lack of small dust grains is either due to the environment (effect of nearby O stars and supernova explosions) or due to disk evolution. If the latter is the case, it would hint that circumstellar disks start to become dust depleted at an age between 5 to 15 Myr. Dust depletion is very likely related to the build-up of larger particles (ultimately rocks and planetesimals) and thus an indicator for the onset of the period of planet formation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available