3.8 Article

Proteomic analysis of differential protein expression in primary hepatocytes induced by EGF, tumour necrosis factor α or the peroxisome proliferator nafenopin

Journal

EUROPEAN JOURNAL OF BIOCHEMISTRY
Volume 267, Issue 15, Pages 4624-4634

Publisher

BLACKWELL SCIENCE LTD
DOI: 10.1046/j.1432-1327.2000.01487.x

Keywords

peroxisome proliferator; proteome; hepatocyte; epidermal growth factor; tumour necrosis factor alpha

Ask authors/readers for more resources

Peroxisome proliferators are nongenotoxic rodent-liver carcinogens that have been shown to cause both an induction of hepatocyte proliferation and a suppression of apoptosis. Both epidermal growth factor (EGF) and the peroxisome proliferator nafenopin induce DNA replication in primary rat hepatocyte cultures, but apparently through different signalling pathways. However, both EGF and nafenopin require tumour necrosis factor alpha (TNF alpha) signalling to induce DNA replication. By examining proteins isolated from rat primary hepatocyte cultures using two-dimensional gel electrophoresis and mass spectrometry, we found that proteins showing an altered expression pattern in response to nafenopin differed from those showing altered expression in response to EGF. However, many proteins showing altered expression upon stimulation with TNF alpha were common to both the EGF and nafenopin responses. These proteome profiling experiments contribute to a better understanding of the molecular mechanisms involved in the response to peroxisome proliferators. We found 32 proteins with altered expression upon stimulation with nafenopin, including muscarinic acetylcholine receptor 3, intermediate filament vimentin and the beta subunit of the ATP synthase. These nonperoxisomal protein targets offer insights into the mechanisms of peroxisome proliferator-induced carcinogenesis in rodents and provide opportunities to identify toxicological markers to facilitate early identification of nongenotoxic carcinogens.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available