4.5 Article Proceedings Paper

The mitochondrial cyanide-resistant oxidase: structural conservation amid regulatory diversity

Journal

BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS
Volume 1459, Issue 2-3, Pages 432-439

Publisher

ELSEVIER
DOI: 10.1016/S0005-2728(00)00181-X

Keywords

alternative oxidase; mitochondrial electron transfer; Di-iron oxidase

Ask authors/readers for more resources

Mitochondria from all plants, many fungi and some protozoa contain a cyanide-resistant, alternative oxidase that functions in parallel with cytochrome c oxidase as the terminal oxidase on the electron transfer chain. Characterization of the structural and potential regulatory features of the alternative oxidase has advanced considerably in recent years. The active site is proposed to contain a di-iron center belonging to the ribonucleotide reductase R2 family and modeling of a four-helix bundle to accommodate this active site within the C-terminal two-thirds of the protein has been carried out. The structural features of this active site are conserved among all known alternative oxidases. The post-translational regulatory features of the alternative oxidase are more variable among organisms. The plant oxidase is dimeric and can be stimulated by either alpha-keto acids or succinate, depending upon the presence or absence, respectively, of a critical cysteine residue found in a conserved block of amino acids in the N-terminal region of the plant protein. The fungal and protozoan alternative oxidases generally exist as monomers and are not subject to organic acid stimulation but can be stimulated by purine nucleotides. The origins of these diverse regulatory features remain unknown but are correlated with sequence differences in the N-terminal third of the protein. (C) 2000 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available