4.7 Article

Naive T cells transiently acquire a memory-like phenotype during homeostasis-driven proliferation

Journal

JOURNAL OF EXPERIMENTAL MEDICINE
Volume 192, Issue 4, Pages 557-564

Publisher

ROCKEFELLER UNIV PRESS
DOI: 10.1084/jem.192.4.557

Keywords

lymphopenia; transgenic; Ly6C; CD44

Funding

  1. NIAID NIH HHS [AI-29802] Funding Source: Medline

Ask authors/readers for more resources

In a depleted lymphoid compartment, naive T cells begin a slow proliferation that is independent of cognate antigen yet requires recognition of major histocompatibility complex-bound self-peptides. We have followed the phenotypic and functional changes that occur when naive CD8(+) T cells undergo this type of expansion in a lymphopenic environment. Naive T cells undergoing homeostasis-driven proliferation convert to a phenotypic and functional state similar to that of memory T cells, yet distinct from antigen-activated effector T cells. Naive T cells dividing in a lymphopenic host upregulate CD44, CD122 (interleukin 2 receptor beta) and Ly6C expression, acquire the ability to rapidly secrete interferon gamma, and become cytotoxic effecters when stimulated with cognate antigen. The conversion of naive T cells to cells masquerading as memory cells in response to a homeostatic signal does not represent an irreversible differentiation. Once the cellularity of the lymphoid compartment is restored and the T cells cease their division, they regain the functional and phenotypic characteristics of naive T cells. Thus, homeostasis-driven proliferation provides a thymus-independent mechanism for restoration of the naive compartment after a loss of T cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available