4.6 Article

Activase region on chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase - Nonconservative substitution in the large subunit alters species specificity of protein interaction

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 275, Issue 34, Pages 26241-26244

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M004580200

Keywords

-

Ask authors/readers for more resources

In the active form of ribulose-1,5 bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39), a carbamate at lysine 201 binds Mg2+, which then interacts with the carboxylation transition state. Rubisco activase facilitates this spontaneous carbamylation/metal-binding process by removing phosphorylated inhibitors from the Rubisco active site. Activase from Solanaceae plants (e.g. tobacco) fails to activate Rubisco from non-Solanaceae plants (e.g. spinach and Chlamydomonas reinhardtii), and non-Solanaceae activase fails to activate Solanaceae Rubisco. Directed mutagenesis and chloroplast transformation previously showed that a proline 89 to arginine substitution on the surface of the large subunit of Chlamydomonas Rubisco switched its specificity from non-Solanaceae to Solanaceae activase activation. To define the size and function of this putative activase binding region, substitutions were created at positions flanking residue 89. As in the past, these substitutions changed the identities of Chlamydomonas residues to those of tobacco. Whereas an aspartate 86 to arginine substitution had little effect, aspartate 94 to lysine Rubisco was only partially activated by spinach activase but now fully activated by tobacco activase. In an attempt to eliminate the activase/tubisco interaction, proline 89 was changed to alanine, which is not present in either non-Solanaceae or Solanaceae Rubisco. This substitution also caused reversal of activase specificity, indicating that amino acid identity alone does not determine the specificity of the interaction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available