4.3 Article

Gamma oscillations as a mechanism for selective information transmission

Journal

BIOLOGICAL CYBERNETICS
Volume 103, Issue 2, Pages 151-165

Publisher

SPRINGER
DOI: 10.1007/s00422-010-0390-x

Keywords

Synchronization; Gamma oscillations; Phase locking; Stimulus selection

Funding

  1. Netherlands Organization for Scientific Research (NWO) [635.100.019]

Ask authors/readers for more resources

In the past decades, many studies have focussed on the relation between the input and output of neurons with the aim to understand information processing by neurons. A particular aspect of neuronal information, which has not received much attention so far, concerns the problem of information transfer when a neuron or a population of neurons receives input from two or more (populations of) neurons, in particular when these (populations of) neurons carry different types of information. The aim of the present study is to investigate the responses of neurons to multiple inputs modulated in the gamma frequency range. By a combination of theoretical approaches and computer simulations, we test the hypothesis that enhanced modulation of synchronized excitatory neuronal activity in the gamma frequency range provides an advantage over a less synchronized input for various types of neurons. The results of this study show that the spike output of various types of neurons [i.e. the leaky integrate and fire neuron, the quadratic integrate and fire neuron and the Hodgkin-Huxley (HH) neuron] and that of excitatory-inhibitory coupled pairs of neurons, like the Pyramidal Interneuronal Network Gamma (PING) model, is highly phase-locked to the larger of two gamma-modulated input signals. This implies that the neuron selectively responds to the input with the larger gamma modulation if the amplitude of the gamma modulation exceeds that of the other signals by a certain amount. In that case, the output of the neuron is entrained by one of multiple inputs and that other inputs are not represented in the output. This mechanism for selective information transmission is enhanced for short membrane time constants of the neuron.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available