4.3 Article

Extracting non-linear integrate-and-fire models from experimental data using dynamic I-V curves

Journal

BIOLOGICAL CYBERNETICS
Volume 99, Issue 4-5, Pages 361-370

Publisher

SPRINGER
DOI: 10.1007/s00422-008-0259-4

Keywords

I-V curve; Exponential integrate-and-fire; Refractoriness

Funding

  1. Research Councils United Kingdom (RCUK)
  2. European Integrated Project FACETS

Ask authors/readers for more resources

The dynamic I-V curve method was recently introduced for the efficient experimental generation of reduced neuron models. The method extracts the response properties of a neuron while it is subject to a naturalistic stimulus that mimics in vivo-like fluctuating synaptic drive. The resulting history-dependent, transmembrane current is then projected onto a one-dimensional current-voltage relation that provides the basis for a tractable non-linear integrate-and-fire model. An attractive feature of the method is that it can be used in spike-triggered mode to quantify the distinct patterns of post-spike refractoriness seen in different classes of cortical neuron. The method is first illustrated using a conductance-based model and is then applied experimentally to generate reduced models of cortical layer-5 pyramidal cells and interneurons, in injected-current and injected- conductance protocols. The resulting low-dimensional neuron models-of the refractory exponential integrate-and-fire type-provide highly accurate predictions for spike-times. The method therefore provides a useful tool for the construction of tractable models and rapid experimental classification of cortical neurons.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available