4.0 Article

Chirality and asymmetric transformations of axially chiral 4,5-disubstituted phenanthreneamides

Journal

TETRAHEDRON-ASYMMETRY
Volume 11, Issue 17, Pages 3503-3513

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0957-4166(00)00298-6

Keywords

-

Ask authors/readers for more resources

We have investigated the rotation barriers of 4-carbamoylphenanthrene and 4-thiocarbamoylphenanthrene and the asymmetric transformations of the novel 4-carboxy-5-carbamoylphenanthrenes. The similar Ar-C and C-N barriers of 92 kJ/mol of 4-carbamoylphenanthrene indicate a strongly correlated process of both rotations. Only the corresponding thioamide could be separated on microcrystalline triacetylcellulose and a barrier of 115.6 kJ/mol was obtained from thermal racemization. Despite the large steric hindrance of the tightly interlocked substituents of the 4-carboxy-5-carbamoylphenanthrenes, the chirality became visible only at temperatures below -60 degreesC by H-1 NMR spectroscopy. Only six of the eight possible stereoisomers, which may form four racemates, have been observed, namely two anti and one syn species. After the asymmetric transformation, one further syn arrangement is less populated or does not exist and the two anti isomers exist in an unequal ratio. Two orientations were found for the amide group: a major form A with the Me-E 'outside' and the carbonyl group 'inside' the bay-area and a minor form B with the reverse arrangement. The low barriers of 4-carboxy-5-carbamoylphenanthrenes indicate that steric hindrance and electrostatic repulsion in the transition state are compensated by correlated Ar-C and C-N rotations and by twisting the phenanthrene plane. In the transition state, the carbonyl group passes the bay area and the pyramidal amide group passes H-3 or H-6 of the phenanthrene ring. (C) 2000 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available