4.4 Article

Difference in the mechanisms of the cold and heat induced unfolding of thioredoxin h from Chlamydomonas reinhardtii:: Spectroscopic and calorimetric studies

Journal

BIOCHEMISTRY
Volume 39, Issue 36, Pages 11154-11162

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi000610b

Keywords

-

Funding

  1. NIGMS NIH HHS [GM54537] Funding Source: Medline

Ask authors/readers for more resources

The thermodynamic stability and temperature induced structural changes of oxidized thioredoxin h from Chlamydomonas reinhardtii have been studied using differential scanning calorimetry (DSC), near- and far-UV circular dichroism (CD), and fluorescence spectroscopies. At neutral pH, the heat induced unfolding of thioredoxin h is irreversible. The irreversibly unfolded protein is unable to refold due to the formation of soluble high-order oligomers. In contrast, at acidic pH the heat induced unfolding of thioredoxin h is fully reversible and thus allows the thermodynamic stability of this protein to be characterized. Analysis of the heat induced unfolding at acidic pH using calorimetric and spectroscopic methods shows that the heat induced denaturation of thioredoxin h can be well approximated by a two-state transition. The unfolding of thioredoxin h is accompanied by a large heat capacity change [6.0 +/- 1.0 kJ/(mol.K)], suggesting that at low pH a cold denaturation should be observed at the above-freezing temperatures for this protein. All used methods (DSC, near-UV CD, far-UV CD, Trp fluorescence) do indeed show that thioredoxin h undergoes cold denaturation at pH <2.5. The cold denaturation of thioredoxin h cannot, however, be fitted to a two-state model of unfolding. Furthermore, according to the far-UV CD, thioredoxin h is fully unfolded at pH 2.0 and 0 degrees C, whereas the other three methods (near-UV CD, fluorescence, and DSC) indicate that under these conditions 20-30% of the protein molecules are still in the native state. Several alternative mechanisms explaining these results such as structural differences in the heat and cold denatured state ensembles and the two-domain structure of thioredoxin h are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available