4.6 Article

Series operation of direct current xenon chloride excimer sources

Journal

JOURNAL OF APPLIED PHYSICS
Volume 88, Issue 6, Pages 3220-3224

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1288699

Keywords

-

Ask authors/readers for more resources

Stable, direct current microhollow cathode discharges in mixtures of hydrochloric acid, hydrogen, xenon, and neon have been generated in a pressure range of 200-1150 Torr. The cathode hole diameter was 250 mu m. Sustaining voltages range from 180 to 250 V at current levels of up to 5 mA. The discharges are strong sources of xenon chloride excimer emission at a wavelength of 308 nm. Internal efficiencies of approximately 3% have been reached at a pressure of 1050 Torr. The spectral radiant power at this pressure was measured as 5 mW/nm at 308 nm for a 3 mA discharge. By using a sandwich electrode configuration, consisting of five perforated, alternate layers of metal and dielectric, a tandem discharge-two discharges in series-could be generated. For an anode-cathode-anode configuration the excimer irradiance, recorded on the axis of the discharge, was twice as large as that of a single discharge. The extension of this basic tandem electrode structure to a multiple electrode configuration allows the generation of high irradiance excimer sources. Placing such a structure with a string of microhollow cathode discharge into an optical resonator promises to lead to a direct current microexcimer laser. (C) 2000 American Institute of Physics. [S0021-8979(00)07018-3].

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available