4.6 Article

Functions of a Rho-specific guanine nucleotide exchange factor in neurite retraction - Possible role of a proline-rich motif of KIAA0380 in localization

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 275, Issue 38, Pages 29570-29578

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M003726200

Keywords

-

Ask authors/readers for more resources

The Rho/Rho kinase signaling pathway plays an essential role in neurite retraction and cell rounding in response to G(12/13)-coupled receptor activation in neuronal cells. The Rho guanine nucleotide exchange factor involved in these processes has not been identified. To monitor the activation state of Rho kinase, we developed a vimentin head/Rho kinase chimera, which is intramolecularly phosphorylated in a Rho-dependent manner at Ser(71) of the fused vimentin head. Using this system, we identified a clone termed KIAA0380, which contains the G alpha(12/13)-binding domain as well as a tandem of the Dbl homology/pleckstrin homology (DH/PH) domain, as an activator of Rho/Rho kinase signaling. Molecular dissection analyses revealed that a proline-rich motif C-terminally adjacent to DH/PH domain is essential for plasma membrane localization of KIAA0380 and cortical actin reorganization followed by cell rounding. In contrast, the DH/PH domain of KIAA0380 is localized in the cytoplasm, where it activates Rho/Rho kinase and induces stress fiber formation, consistent with results using p115 Rho guanine nucleotide exchange factor, which has a similar structure to KIAA0380 but lacks a proline-rich motif, These results suggest that upon stimulation, KIAA0380 translocates to the plasma membrane via the proline-rich motif and there activates Rho/Rho kinase signaling, In neuroblastoma Neuro2a cells, KIAA0380 was observed in the tips of neurites, a location where cortical actin reorganization is induced upon stimulation with lysophosphatidic acid. Ectopic expression of the N-terminal fragment inhibited lysophosphatidic acid-induced neurite retraction of Neuro2a cells. These results suggest that KIAA0380 plays an important role in neurite retraction through Rho-dependent signaling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available