4.6 Article

A di-aromatic motif in the cytosolic tail of the mannose receptor mediates endosomal sorting

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 275, Issue 38, Pages 29694-29700

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M000571200

Keywords

-

Funding

  1. NIAID NIH HHS [2R01AI20015-16] Funding Source: Medline

Ask authors/readers for more resources

The mannose receptor (MR), the prototype of a new family of multilectin receptor proteins important in innate immunity, undergoes rapid internalization and recycling from the endosomal system back to the cell surface. Sorting of the MR in endosomes prevents the receptor from entering lysosomes where it would be degraded. Here, we focused on a diaromatic sequence (Tyr(18)-Phe(19)) in the MR cytoplasmic tail as an endosomal sorting signal. The subcellular distribution of chimeric constructs between the MR and the cation-dependent mannose 6-phosphate receptor was assessed by Percoll density gradients and cell surface assays. Unlike the wild type constructs, mutant receptors with alanine substitutions of Tyr(18)-Phe(19) were highly missorted to lysosomes, indicating that the di-aromatic motif of the MR cytoplasmic tail mediates sorting in endosomes. Within this sequence Tyr(18) is the key residue with Phe(19) contributing to this function. Moreover, Tyr(18) was also found to be essential for internalization, consistent with the presence of overlapping signals for internalization and endosomal sorting in the cytosolic tail of the MR. A di-aromatic amino acid sequence in the cytosolic tail has now been shown to function in two receptors known to be internalized from the plasma membrane, the MR and the cation-dependent mannose 6-phosphate receptor. This feature therefore appears to be a general determinant for endosomal sorting.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available