4.6 Article

Molecular characterization of a first human 3(α→β)-hydroxysteroid epimerase

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 275, Issue 38, Pages 29452-29457

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M000562200

Keywords

-

Ask authors/readers for more resources

In this report, we describe the isolation and characterization of a cDNA encoding an enzyme that exhibits catalytic characteristics of a 3(alpha-->beta)-hydroxysteroid epimerase (3(alpha-->beta)-HSE). The enzyme overexpressed in human 293 embryonic kidney cells transforms androsterone into epi-androsterone in two steps: the oxidation of androsterone to 5 alpha-androstane-3,17-dione, followed by the reduction of the latter to epi-androsterone. The reverse reaction, 3(beta-->alpha)-hydroxysteroid epimeration, is approximately 10-fold weaker. These results are confirmed by V-max/K-m determination, which shows that the enzyme catalyzes the oxidation of androsterone to 5 alpha-androstane-3,17-dione and the reduction of 5 alpha-androstane-3,17-dione to epi-androsterone more efficiently than the reverse reactions. The selective catalysis of the reaction following the 3(alpha-->beta) direction is also observed in intact transfected cells in culture, which better reflect physiological conditions. In vitro assays reveal that the recombinant enzyme prefers NAD(+) and NADH as cofactors and could recognize both C-19 and C-21 3 alpha-hydroxysteroids as substrates, DNA sequence analysis predicts a protein of 317 amino acids. Tissue distribution analysis using RT-PCR reveals that the mRNA of the enzyme is expressed in various tissues, including liver, brain, prostate, adrenal, and uterus, with the most abundant expression in the liver. Because active hydroxysteroids generally exert their effect in a stereospecific manner, 3(alpha-->beta)-HSE could thus potentially play an important role in regulating the biological activities of various steroids.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available