4.7 Article

Using occurrence records to model historic distributions and estimate habitat losses for two psammophilic lizards

Journal

BIOLOGICAL CONSERVATION
Volume 141, Issue 7, Pages 1885-1893

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biocon.2008.05.006

Keywords

niche models; Mahalanobis D-2; conservation planning; landscape scale; aeolian sand; Coachella Valley fringe-toed lizard; flat-tailed horned lizard

Ask authors/readers for more resources

Estimating historic distributions of species is a critical step in evaluating current levels of habitat loss, evaluating sites for potential restoration and reintroductions, and for conservation planning at a landscape scale. However historic distributions can be difficult to estimate objectively because substantial habitat changes may have occurred prior to comprehensive surveys. As a means to address this question, we evaluated a novel approach by creating spatial niche models for two species of psammophilic lizards. Using a partitioned Mahalanobis D-2 analysis and abiotic variables that were independent of anthropogenic change, we created niche models for the federally threatened Coachella Valley fringe-toed lizard (Uma inornata) and for the flat-tailed horned lizard (Phrynosoma mcallii). The niche models estimated that within the Coachella Valley there were originally 32,164 ha of potential habitat for the fringe-toed lizard and 33,502 ha of potential habitat for the horned lizard. After screening these estimates of historic habitat for current conditions that would render that potential habitat unsuitable, we calculated a 91-95% loss of potential habitat for the fringe-toed lizard and an 83-92% loss for the horned lizard. Unlike the fringe-toed lizard, the horned lizard also occurs outside the Coachella Valley. Conducting a similar analysis throughout its range would provide an objective estimate of the total habitat loss experienced by this species. This information could be used to address whether granting it federal or state protection is warranted. For species whose distributions can be modeled with abiotic variables such as soils, elevation, topography, and climate, this approach may have broad applications for resolving questions regarding their current levels of habitat loss and regional conservation planning. (c) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available