4.4 Article

De novo synthesis of minus strand RNA by the rotavirus RNA polymerase in a cell-free system involves a novel mechanism of initiation

Journal

RNA
Volume 6, Issue 10, Pages 1455-1467

Publisher

COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT
DOI: 10.1017/S1355838200001187

Keywords

RNA elongation; RNA initiation; RNA polymerase; RNA synthesis; rotavirus

Ask authors/readers for more resources

The replicase activity of rotavirus open cores has been used to study the synthesis of (-) strand RNA from viral (+) strand RNA in a cell-free replication system. The last 7 nt of the (+) strand RNA, 5'-UGUGACC-3', are highly conserved and are necessary for efficient (-) strand synthesis in vitro, Characterization of the cell-free replication system revealed that the addition of NaCl inhibited (-) strand synthesis. By preincubating open cores with (+) strand RNA and ATP, CTP, and GTP prior to the addition of NaCl and UTP, the salt-sensitive step was overcome. Thus, (-) strand initiation, but not elongation, was a salt-sensitive process in the cell-free system. Further analysis of the requirements for initiation showed that preincubating open cores and the (+) strand RNA with GTP or UTP, but not with ATP or CTP, allowed (-) strand synthesis to occur in the presence of NaCl, Mutagenesis suggested that in the presence of GTP, (-) strand synthesis initiated at the 3'-terminal C residue of the (+) strand template, whereas in the absence of GTP, an aberrant initiation event occurred at the third residue upstream from the 3' end of the (+) strand RNA. During preincubation with GTP, formation of the dinucleotides pGpG and ppGpG was detected; however, no such products were made during preincubation with ATP, CTP, or UTP, Replication assays showed that pGpG, but not GpG, pApG, or ApG, served as a specific primer for (-) strand synthesis and that the synthesis of pGpG may occur by a template-independent process. From these data, we conclude that initiation of rotavirus (-) strand synthesis involves the formation of a ternary complex consisting of the viral RNA-dependent RNA polymerase, viral (+) strand RNA, and possibly a 5'-phosphorylated dinucleotide, that is, pGpG or ppGpG.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available