4.6 Article

High resolution spatiotemporal analysis of the contingent negative variation in simple or complex motor tasks and a non-motor task

Journal

CLINICAL NEUROPHYSIOLOGY
Volume 111, Issue 10, Pages 1847-1859

Publisher

ELSEVIER SCI IRELAND LTD
DOI: 10.1016/S1388-2457(00)00388-6

Keywords

contingent negative variation; complex and simple sequential movement; non-motor task; motor areas; high resolution; spatiotemporal analysis; current source density

Ask authors/readers for more resources

Objectives: Since the characteristics of the Bereitschaftspotential (BP) - voluntary movement paradigm of internally-driven movements - have been established recently by our group using high resolution DC-EEG techniques, it was of great interest to apply similar techniques to the other slow brain potential - contingent negative variation (CNV) of externally-cued movements - with the same motor tasks using the same subjects. Methods: The CNV for simple bimanual sequential movements (task 1), complex bimanual sequential movements (task 2) and a non-motor condition (task 3) was recorded on the scalp using a 64 channel DC-EEG in 16 healthy subjects, and the data were analyzed with high resolution spatiotemporal statistics and current source density (CSD). Results: (1) The CNV was distributed over frontal, frontocentral, central and centroparietal regions; a negative potential was found at the frontal pole and a positive potential was found over occipital regions. (2) CNV amplitudes were higher for task 2 than for task 1, and there was no late CNV for task 3. (3) A high resolution spatiotemporal analysis revealed that during the early CNV component, statistical differences existed between the motor tasks (tasks 1 and 2) and the non-motor task (task 3), which occurred at frontocentral, central, centroparietal, parietal and parieto-occipital regions. During the late CNV component, additional significant differences were found not only between the motor tasks and the Iron-motor task but also between motor task 1 and task 2 at frontocentral, central and centroparietal regions. (4) Comparison of the CNV between the frontomesial cortex (situated over the supplementary/cingulate areas, SCMA) and both lateral pre-central areas (situated over the primary motor areas, Mis) showed that there was no statistically significant difference between the two cortical motor areas except for the early CNV. (5) Comparison of the CNV between the 3 tasks over the cortical motor areas showed that there were significant differences between the motor tasks and the non-motor task regarding the auditory evoked potential (AEP) and the early CNV component, and between all 3 tasks in the late CNV, the visual evoked potential (VEP2) and the N-P component. (6) The ranges and the densities of the CSD maps were larger and higher for complex than for simple tasks. The current sinks of the AEP and the early CNV were located at Fz, the late CNV at FCz and surrounding regions. As to be expected, current sources of the VEPs were located at the occipital lobes. The CNV was a current sink (negative) except for the VEP's main component which was a current source (positive). Conclusions: (1) The CNV topography over the scalp varied with the complexity of motor tasks and between motor and non-motor conditions. (2) The origin of the early CNV may rest in the frontal lobes, while the late CNV may stem from more extensive cortical areas including SCMA, MIs, etc. (3) The late CNV component is not identical with the BP. (C) 2000 Elsevier Science Ireland Ltd. All lights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available