4.5 Article

Excitation transfer in the peridinin-chlorophyll-protein of Amphidinium carterae

Journal

BIOPHYSICAL JOURNAL
Volume 79, Issue 4, Pages 1695-1705

Publisher

CELL PRESS
DOI: 10.1016/S0006-3495(00)76422-8

Keywords

-

Categories

Funding

  1. NCRR NIH HHS [5 P41 RR05969-04] Funding Source: Medline

Ask authors/readers for more resources

Peridinin-chlorophyll-protein (PCP) is a unique light-harvesting protein that uses carotenoids as its primary light-absorbers. This paper theoretically investigates excitation transfer between carotenoids and chlorophylls in PCP of the dinoflagellate Amphidinium carterae. Calculations based on a description of the electronic states of the participating chromophores and on the atomic level structure of PCP seek to identify the mechanism and pathways of singlet excitation flow. After light absorption the optically allowed states of peridinins share their electronic excitation in excitonic fashion, but are not coupled strongly to chlorophyll residues in PCP. Instead, a gateway to chlorophyll Q(y) excitations is furnished through a low-lying optically forbidden excited state, populated through internal conversion. Carbonyl group and non-hydrogen side groups of peridinin are instrumental in achieving the respective coupling to chlorophyll. Triplet excitation transfer to peridinins, mediated by electron exchange, is found to efficiently protect chlorophylls against photo-oxidation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available