4.3 Review

Physiological and Pathological Functions of Cl- Channels in Chondrocytes

Journal

BIOLOGICAL & PHARMACEUTICAL BULLETIN
Volume 41, Issue 8, Pages 1145-1151

Publisher

PHARMACEUTICAL SOC JAPAN
DOI: 10.1248/bpb.b18-00152

Keywords

chloride channel; cartilage; chondrocyte; osteoarthritis; voltage-dependent CF channel; TMEM16

Funding

  1. Japan Society for the Promotion of Science [17H05537, 16K08278, 26860059, 16H06215, 26293021]
  2. Japan Research Foundation for Clinical Pharmacology
  3. Nakatomi Foundation
  4. Grants-in-Aid for Scientific Research [26293021, 16H06215, 26860059, 17H05537, 16K08278] Funding Source: KAKEN

Ask authors/readers for more resources

Articular chondrocytes are embedded in the cartilage of diarthrodial joints and responsible for the synthesis and secretion of extracellular matrix. The extracellular matrix mainly contains collagens and proteoglycans, and covers the articular cartilage to protect from mechanical and biochemical stresses. In mammalian chondrocytes, various types of ion channels have been identified: e.g., voltage-dependent K+ channels, Ca2+-activated K+ channels, ATP-sensitive K+ channels, two-pore domain K+ channels, voltage dependent Ca2+ channels, store-operated Ca2+ channels, epithelial Na+ channels, acid-sensing ion channels, transient receptor potential channels, and mechanosensitive channels. These channels play important roles for the regulation of resting membrane potential, Ca2+ signaling, pH sensing, mechanotransduction, and cell proliferation in articular chondrocytes. In addition to these cation channels, Cl- channels are known to be expressed in mammalian chondrocytes: e.g., voltage-dependent Cl- channels, cystic fibrosis transmembrane conductance regulator channels, swelling-activated Cl- channels, and Ca(2+-)activated Cl- channels. Although these chondrocyte Cl- channels are thought to contribute to the regulation of resting membrane potential, Ca2+ signaling, cell volume, cell survival, and endochondral bone formation, the physiological functions have not been fully clarified. Osteoarthritis (OA) is caused by the degradation of articular cartilage, resulting in inflammation and pain in the joints. Therefore the pathophysiological roles of Cl- channels in OA chondrocytes are of considerable interest. Elucidating the physiological and pathological functions of chondrocyte Cl- channels will provide us a more comprehensive understanding of chondrocyte functions and may suggest novel molecular targets of drug development for OA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available