4.5 Article

Bradykinin activates the Janus-activated kinase/signal transducers and activators of transcription (JAK/STAT) pathway in vascular endothelial cells: localization of JAK/STAT signalling proteins in plasmalemmal caveolae

Journal

BIOCHEMICAL JOURNAL
Volume 351, Issue -, Pages 257-264

Publisher

PORTLAND PRESS LTD
DOI: 10.1042/0264-6021:3510257

Keywords

B2 receptor; caveolin-1; mitogen-activated protein kinase; STAT3; Tyk2

Funding

  1. NHLBI NIH HHS [HL57201, HL62152] Funding Source: Medline

Ask authors/readers for more resources

Bradykinin (BK) is an important physiological regulator of endothelial cell function. In the present study, we have examined the role of the Janus-activated kinase (JAK)/signal transducers and activators of transcription (STAT) pathway in endothelial signal transduction through the BK B2 receptor (B2R). In cultured bovine aortic endothelial cells (BAECs), BK activates Tyk2 of the JAK family of tyrosine kinases. Activation results in the tyrosine phosphorylation and subsequent nuclear translocation of STAT3. BK also activates the mitogen-activated p44 and p42 protein kinases, resulting in STAT3 serine phosphorylation. Furthermore, Tyk2 and STAT3 form a complex with the B2R in response to BK stimulation. Under basal conditions, Tyk2, STAT3 and the B2R are localized either partially or entirely in endothelial plasmalemmal caveolae. Following BK stimulation of BAECs, however, the B2R and STAT3 are translocated out of caveolae. Taken together, these data suggest that BK activates the JAK/STAT pathway in endothelial cells and that JAR/STAT signalling proteins are localized in endothelial caveolae. Moreover, caveolar localization of the B2R and STAT3 appears to be regulated in an agonist-dependent manner.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available