4.7 Article

Caspase-like protease involvement in the control of plant cell death

Journal

PLANT MOLECULAR BIOLOGY
Volume 44, Issue 3, Pages 417-428

Publisher

SPRINGER
DOI: 10.1023/A:1026509012695

Keywords

apoptosis; baculovirus p35; Bcl-2-like proteins; caspases; cell death; hypersensitive response; mitochondria

Ask authors/readers for more resources

Cell death as a highly regulated process has now been recognized to be an important, if not essential, pathway that is ubiquitous in all multicellular eukaryotes. In addition to playing key roles in the morphogenesis and sculpting of the organs to give rise to highly specialized forms and shapes, cell death also participates in the programmed creation of specialized cell types for essential functions such as the selection of B cells in the immune system of mammals and the formation of tracheids in the xylem of vascular plants. Studies of apoptosis, the most well-characterized form of animal programmed cell death, have culminated in the identification of a central tripartite death switch the enzymatic component of which is a conserved family of cysteine proteases called caspases. Studies in invertebrates and other animal models suggest that caspases are conserved regulators of apoptotic cell death in all metazoans. In plant systems, the identities of the main executioners that orchestrate cell death remain elusive. Recent evidence from inhibitor studies and biochemical approaches suggests that caspase-like proteases may also be involved in cell death control in higher plants. Furthermore, the mitochondrion and reactive oxygen species may well constitute a common pathway for cell death activation in both animal and plant cells. Cloning of plant caspase-like proteases and elucidation of the mechanisms through which mitochondria may regulate cell death in both systems should shed light on the evolution of cell death control in eukaryotes and may help to identify essential components that are highly conserved in eukaryotes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available