3.8 Article

Dopamine receptor immunohistochemistry in the rat choroid plexus

Journal

JOURNAL OF AUTONOMIC PHARMACOLOGY
Volume 20, Issue 5-6, Pages 325-332

Publisher

BLACKWELL SCIENCE LTD
DOI: 10.1046/j.1365-2680.2000.00198.x

Keywords

-

Ask authors/readers for more resources

1 Earlier studies have demonstrated a high density of dopamine D1-like receptor binding in the choroid plexus by light microscope autoradiography, but the dopaminergic specificity of this binding was questioned. 2 In this study the localization of dopamine receptor subtypes was investigated in the rat choroid plexus by Western blot analysis and immunohistochemistry using antibodies raised against dopamine D1-D5 receptor protein. 3 Western blot analysis revealed reactivity with immune bands of approximately 50 and 51 KDa corresponding to dopamine D1 and D5 receptors, respectively. Dopamine D1-like (D1 and D5) receptor protein immunoreactivity insensitive to superior cervical ganglionectomy was located in smooth muscle of choroid arteries and to a larger extent within choroid plexus epithelium. 4 Western blot analysis revealed reactivity with immune bands of approximately 53 KDa and 40-42 KDa corresponding to dopamine D2 and D4 receptors, respectively, and no dopamine D3 receptor reactivity. Dopamine D2-like receptor protein immunoreactivity displayed a distribution similar to that of tyrosine-hydroxylase (TH)-immunoreactive sympathetic fibres and disappeared after superior cervical ganglionectomy. It consisted in the expression of dopamine D2 and to a lesser extent of D4 receptor protein immunoreactivity perivascularly and associated with choroid epithelium. No D3 receptor protein immunoreactivity was found in rat choroid plexus. 5 The above results indicate that rat choroid plexus expresses dopamine receptor protein, being dopamine D1-like receptors predominant in epithelium and arterial smooth muscle and D2-like receptors in sympathetic nerve fibres supplying choroid plexus epithelium and vasculature. 6 These findings suggests that dopamine receptors with a different anatomical localization may modulate production of cerebrospinal fluid.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available