4.8 Article

MADS-box gene diversity in seed plants 300 million years ago

Journal

MOLECULAR BIOLOGY AND EVOLUTION
Volume 17, Issue 10, Pages 1425-1434

Publisher

SOC MOLECULAR BIOLOGY EVOLUTION
DOI: 10.1093/oxfordjournals.molbev.a026243

Keywords

MADS-box gene; gymnosperm; angiosperm; Gnetales; development; evolution

Ask authors/readers for more resources

MADS-box genes encode a family of transcription factors which control diverse developmental processes in flowering plants ranging from root development to flower and fruit development. Through phylogeny reconstructions, most of these genes can be subdivided into defined monophyletic gene clades whose members share similar expression patterns and functions. Therefore, the establishment of the diversity of gene clades was probably an important event in land plant evolution. In order to determine when these clades originated, we isolated cDNAs of 19 different MADS-box genes from Gnetum gnemon, a gymnosperm model species and thus a representative of the sister group of the angiosperms. Phylogeny reconstructions involving all published MADS-box genes were then used to identify gene clades containing putative orthologs from both angiosperm and gymnosperm lineages. Thus, the minimal number of MADS-box genes that were already present in the last common ancestor of extant gymnosperms and angiosperms was determined. Comparative expression studies involving pairs of putatively orthologous genes revealed a diversity of patterns that has been largely conserved since the time when the angiosperm and gymnosperm lineages separated. Taken together, our data suggest that there were already at least seven different MADS-box genes present: at the base of extant seed plants about 300 MYA. These genes were probably already quite diverse in terms of both sequence and function. In addition, our data demonstrate that the MADS-box gene families of extant gymnosperms and angiosperms are of similar complexities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available