4.8 Article

Function-based isolation of novel enzymes from a large library

Journal

NATURE BIOTECHNOLOGY
Volume 18, Issue 10, Pages 1071-1074

Publisher

NATURE AMERICA INC
DOI: 10.1038/80267

Keywords

flow cytometry; directed enzyme evolution; fluorescence

Ask authors/readers for more resources

Here we describe a high-throughput, quantitative method for the isolation of enzymes with novel substrate specificities from large libraries of protein variants. Protein variants are displayed on the surface of microorganisms and incubated with a synthetic substrate consisting of (1) a fluorescent dye (2) a positively charged moiety (3) the target scissile bond, and (4) a fluorescence resonance energy transfer (FRET) quenching partner. Enzymatic cleavage of the scissile bond results in release of the FRET quenching partner while the fluorescent product is retained on the cell surface, allowing isolation of catalytically active clones by fluorescence-activated cell sorting (FACS). Using a synthetic substrate with these characteristics, we enriched Escherichia coli expressing the serine protease OmpT from cells expressing an inactive OmpT variant by over 5,000-fold in a single round. Screening a library of 6 x 10(5) random OmpT variants by FAGS using a FRET peptide substrate with a nonpreferred Arg-Val cleavage sequence resulted in the isolation of variant proteases with catalytic activities enhanced by as much as 60-fold. This approach represents a potentially widely applicable method for high-throughput screening of large libraries on the basis of catalytic turnover.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available