4.5 Article

A direct optimization approach to hidden Markov modeling for single channel kinetics

Journal

BIOPHYSICAL JOURNAL
Volume 79, Issue 4, Pages 1915-1927

Publisher

BIOPHYSICAL SOCIETY
DOI: 10.1016/S0006-3495(00)76441-1

Keywords

-

Categories

Funding

  1. NCRR NIH HHS [RR-11114] Funding Source: Medline

Ask authors/readers for more resources

Hidden Markov modeling (HMM) provides an effective approach for modeling single channel kinetics. Standard HMM is based on Baum's reestimation. As applied to single channel currents, the algorithm has the inability to optimize the rate constants directly. We present here an alternative approach by considering the problem as a general optimization problem. The quasi-Newton method is used for searching the likelihood surface. The analytical derivatives of the likelihood function are derived, thereby maximizing the efficiency of the optimization. Because the rate constants are optimized directly, the approach has advantages such as the allowance for model constraints and the ability to simultaneously fit multiple data sets obtained at different experimental conditions. Numerical examples are presented to illustrate the performance of the algorithm. Comparisons with Baum's reestimation suggest that the approach has a superior convergence speed when the likelihood surface is poorly defined due to, for example, a low signal-to-noise ratio or the aggregation of multiple states having identical conductances.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available