4.4 Article

Modelling prior distributions of atoms for macromolecular refinement and completion

Journal

ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY
Volume 56, Issue -, Pages 1316-1323

Publisher

INT UNION CRYSTALLOGRAPHY
DOI: 10.1107/S0907444900008490

Keywords

-

Ask authors/readers for more resources

Until modelling is complete, macromolecular structures are refined in the absence of a model for some of the atoms in the crystal. Techniques for defining positional probability distributions of atoms, and using them to model the missing part of a macromolecular crystal structure and the bulk solvent, are described. The starting information may consist of either a tentative structural model for the missing atoms or an electron-density map. During structure completion and refinement, the use of probability distributions enables the retention of low-resolution phase information while avoiding premature commitment to uncertain higher resolution features. Homographic exponential modelling is proposed as a flexible, compact and robust parametrization that proves to be superior to a traditional Fourier expansion in approximating a model protein envelope. The homographic exponential model also has potential applications to ab initio phasing of Fourier amplitudes associated with macromolecular envelopes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available