4.7 Article

Cellular and network mechanisms of rhythmic recurrent activity in neocortex

Journal

NATURE NEUROSCIENCE
Volume 3, Issue 10, Pages 1027-1034

Publisher

NATURE AMERICA INC
DOI: 10.1038/79848

Keywords

-

Categories

Ask authors/readers for more resources

The neocortex generates periods of recurrent activity, such as the slow (0.1-0.5 Hz) oscillation during slow-wave sleep. Here we demonstrate that slices of ferret neocortex maintained in vitro generate this slow (< 1 Hz) rhythm when placed in a bathing medium that mimics the extracellular ionic composition in situ. This slow oscillation seems to be initiated in layer 5 as an excitatory interaction between pyramidal neurons and propagates through the neocortex. Our results demonstrate that the cerebral cortex generates an 'up' or depolarized state through recurrent excitation that is regulated by inhibitory networks, thereby allowing local cortical circuits to enter into temporarily activated and self-maintained excitatory states. The spontaneous generation and failure of this self-excited state may account for the generation of a subset of cortical rhythms during sleep.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available