4.6 Article

Prostasomes inhibit the NADPH oxidase activity of human neutrophils

Journal

MOLECULAR HUMAN REPRODUCTION
Volume 6, Issue 10, Pages 883-891

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/molehr/6.10.883

Keywords

NADPH oxidase; polymorphonuclear neutrophils; prostasomes; reactive oxygen species; semen

Ask authors/readers for more resources

Prostasomes are particular lipid vesicles secreted by the prostate in human semen and involved in several physiological functions such as the improvement of sperm motility or immunomodulation. We have previously shown that they reduced the overall reactive oxygen species (ROS) production of seminal polymorphonuclear neutrophils (PMN). The present study was conducted to define the mechanism by which prostasomes inhibit the ROS production of blood and seminal PMN. The luminol chemiluminescence measuring total ROS production of blood PMN stimulated by either a phorbol ester (PMA) or a chemoattractant peptide, formyl-Met-Leu-Phe (fMLP) was significantly inhibited by prostasomes. The NADPH oxidase activity of the PMN was measured by 2-methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazo[1,2-a]pyrazin-3-one (MCLA) chemiluminescence. Prostasomes inhibited the NADPH oxidase activity of blood or seminal PMN and increased the lag-phase of the enzyme after PMA stimulation. Prostasomes also inhibited significantly the NADPH oxidase activity of fMLP stimulated blood PMN, but the inhibition was not significant for seminal PMN. The lipid composition of blood PMN was analysed and compared to the lipid composition of prostasomes. This showed that prostasomes had a high cholesterol:phospholipid molar ratio and a high proportion of sphingomyelin. Together with the fact that prostasomes can rigidify the plasma membrane of blood PMN, these results led us to postulate that prostasomes inhibit the NADPH oxidase activity of PMN by lipid transfer from the prostasomes to the plasma membrane of the PMN.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available