4.4 Article

Voltage-gated calcium channels direct neuronal migration in Caenorhabditis elegans

Journal

DEVELOPMENTAL BIOLOGY
Volume 226, Issue 1, Pages 104-117

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/dbio.2000.9854

Keywords

calcium channel; Caenorhabditis elegans; neuronal migration; CaM kinase

Ask authors/readers for more resources

Calcium signaling is known to be important for regulating the guidance of migrating neurons, yet the molecular mechanisms underlying this process are not well understood. We have found that two different voltage-gated calcium channels are important for the accurate guidance of postembryonic neuronal migrations in the nematode Caenorhabditis elegans. In mutants carrying loss of function alleles of the calcium channel gene unc-2, the touch receptor neuron AVM and the interneuron SDQR often migrated inappropriately, leading to misplacement of their cell bodies. However, the AVM neurons in unc-2 mutant animals extended axons in a wild-type pattern, suggesting that the UNC-2 calcium channel specifically directs migration of the neuronal cell body and is not required for axonal pathfinding. In contrast, mutations in egl-19, which affect a different voltage-gated calcium channel, affected the migration of the AVM and SDQR bodies, as well as the guidance of the AVM axon. Thus, cell migration and axonal pathfinding in the AVM neurons appear to involve distinct calcium channel subtypes. Mutants defective in the unc-43/CaM kinase gene showed a defect in SDQR and AVM positioning that resembled that of unc-2 mutants; thus, CaM kinase may function as an effector of the UNC-2-mediated calcium influx in guiding cell migration. (C) 2000 Academic Press.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available