4.0 Article

Composite biomolecule/PEDOT materials for neural electrodes

Journal

BIOINTERPHASES
Volume 3, Issue 3, Pages 83-93

Publisher

AMER INST PHYSICS
DOI: 10.1116/1.2998407

Keywords

-

Funding

  1. Strategic Research Foundation SSF through OBOE
  2. Center of Organic Bioelectronics

Ask authors/readers for more resources

Electrodes intended for neural communication must be designed to meet both the electrochemical and biological requirements essential for long term functionality. Metallic electrode materials have been found inadequate to meet these requirements and therefore conducting polymers for neural electrodes have emerged as a field of interest. One clear advantage with polymer electrodes is the possibility to tailor the material to have optimal biomechanical and chemical properties for certain applications. To identify and evaluate new materials for neural communication electrodes, three charged biomolecules, fibrinogen, hyaluronic acid (HA), and heparin are used as counterions in the electrochemical polymerization of poly (3,4-ethylenedioxythiophene) (PEDOT). The resulting material is evaluated electrochemically and the amount of exposed biomolecule on the surface is quantified. PEDOT: biomolecule surfaces are also studied with static contact angle measurements as well as scanning electron microscopy and compared to surfaces of PEDOT electrochemically deposited with surfactant counterion polystyrene sulphonate (PSS). Electrochemical measurements show that PEDOT: heparin and PEDOT: HA, both have the electrochemical properties required for neural electrodes, and PEDOT: heparin also compares well to PEDOT: PSS. PEDOT: fibrinogen is found less suitable as neural electrode material. (C) 2008 American Vacuum Society.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available