4.7 Article

The chemotherapeutic oxaliplatin alters voltage-gated Na+ channel kinetics on rat sensory neurons

Journal

EUROPEAN JOURNAL OF PHARMACOLOGY
Volume 406, Issue 1, Pages 25-32

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0014-2999(00)00667-1

Keywords

neuropathy; colorectal cancer; dorsal root ganglia; hippocampal neuron; sural nerve

Ask authors/readers for more resources

The chemotherapeutic oxaliplatin causes a sensory-motor neuropathy with predominantly hyperpathic symptoms. The mechanism underlying this hyperexcitability was investigated using rat sensory nerve preparations, dorsal root ganglia and hippocampal neurons. Oxaliplatin resulted in an increase of the amplitude and duration of compound action potentials. It lengthened the refractory period of peripheral nerves suggesting an interaction with voltage-gated Na+ channels. Application of oxaliplatin to dorsal root ganglion neurons resulted in an increase of the Na+ current, a block of the maximal amplitude and a shift of the voltage-response relationship towards more negative membrane potentials. The effect was detectable on 13 of 18 tested cells. This observation, together with the absence of any effect on Na+ currents of hippocampal neurons, suggests that the interaction of oxaliplatin is restricted to one or more channel subtypes. The effect of oxaliplatin could be antagonised by the Na+ channel blocker carbamazepine which could be used to reduce side effects of oxaliplatin therapy in patients. (C) 2000 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available