4.7 Article

Lipophilicity of the nitrophenols

Journal

JOURNAL OF ORGANIC CHEMISTRY
Volume 65, Issue 21, Pages 7114-7118

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jo000840w

Keywords

-

Ask authors/readers for more resources

The lipophilicity of the nitrophenols, expressed as a water-solvent partition coefficient, P, has been investigated using the solvation equation, log P = c + eE + sS + aA + bB + vV. It is shown that this equation accounts quantitatively for lipophilicity in a selection of water-solvent systems, viz: octanol, 1,2-dichloroethane, and cyclohexane. In the latter two-systems, the major factor in the increased lipophilicity of a-nitrophenol over 3- and 4-nitrophenol is the lack of hydrogen bond acidity of 2-nitrophenol. The water-octanol system differs in that the a coefficient is effectively zero, so that hydrogen bond acidity of solutes plays no part, and the three mononitrophenols then have similar lipophilicities. The dinitrophenols and picric acid are similarly discussed. The hydrogen bond acidity of 2,3-dinitrophenol (0.67) is very much larger than that of 2,4- or 2,5-dinitrophenol (0.09 and 0.11), indicating a very much reduced internal hydrogen bonding. A similar but much smaller effect occurs with 2,6-dinitrophenol (A = 0.17). Picric acid has a moderate hydrogen bond acidity (0.46) so that the phenolic OH is still available for external hydrogen bonding. These results are confirmed by ab initio calculations which show that 2,3- and 2,6-dinitrophenol and picric acid are significantly distorted away from planarity, which apparently disrupts their internal hydrogen bonding.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available