4.7 Article

Resolving complex tandem repeats with long reads

Journal

BIOINFORMATICS
Volume 30, Issue 24, Pages 3491-3498

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/bioinformatics/btu437

Keywords

-

Funding

  1. Icahn School of Medicine at Mount Sinai

Ask authors/readers for more resources

Motivation: Resolving tandemly repeated genomic sequences is a necessary step in improving our understanding of the human genome. Short tandem repeats (TRs), or microsatellites, are often used as molecular markers in genetics, and clinically, variation in microsatellites can lead to genetic disorders like Huntington's diseases. Accurately resolving repeats, and in particular TRs, remains a challenging task in genome alignment, assembly and variation calling. Though tools have been developed for detecting microsatellites in short-read sequencing data, these are limited in the size and types of events they can resolve. Single-molecule sequencing technologies may potentially resolve a broader spectrum of TRs given their increased length, but require new approaches given their significantly higher raw error profiles. However, due to inherent error profiles of the single-molecule technologies, these reads presents a unique challenge in terms of accurately identifying and estimating the TRs. Results: Here we present PACMONSTR, a reference-based probabilistic approach, to identify the TR region and estimate the number of these TR elements in long DNA reads. We present a multistep approach that requires as input, a reference region and the reference TR element. Initially, the TR region is identified from the long DNA reads via a 3-stage modified Smith-Waterman approach and then, expected number of TR elements is calculated using a pair-Hidden Markov Models-based method. Finally, TR-based genotype selection (or clustering: homozygous/heterozygous) is performed with Gaussian mixture models, using the Akaike information criteria, and coverage expectations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available