4.8 Article

Localizing proteins in the cell from their phylogenetic profiles

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.220399497

Keywords

-

Ask authors/readers for more resources

We introduce a computational method for identifying subcellular locations of proteins from the phylogenetic distribution of the homologs of organellar proteins. This method is based on the observation that proteins localized to a given organelle by experiments tend to share a characteristic phylogenetic distribution of their homologs-a phylogenetic profile. Therefore any other protein can be localized by its phylogenetic profile. Application of this method to mitochondrial proteins reveals that nucleus-encoded proteins previously known to be destined for mitochondria fall into three groups: prokaryote-derived, eukaryote-derived, and organism-specific (i,e,, found only in the organism under study). Prokaryote-derived mitochondrial proteins can be identified effectively by their phylogenetic profiles. In the yeast Saccharomyces cerevisiae, 361 nucleus-encoded mitochondrial proteins can be identified at 50% accuracy with 58% coverage. From these values and the proportion of conserved mitochondrial genes, it can be inferred that approximate to 630 genes, or 10% of the nuclear genome, is devoted to mitochondrial function. In the worm Caenorhabditis elegans, we estimate that there are approximate to 660 nucleus-encoded mitochondrial genes, or 4% of its genome, with approximate to 400 of these genes contributed from the prokaryotic mitochondrial ancestor. The large fraction of organism-specific and eukaryote-derived genes suggests that mitochondria perform specialized roles absent from prokaryotic mitochondrial ancestors. We observe measurably distinct phylogenetic profiles among proteins from different subcellular compartments, allowing the general use of prokaryotic genomes in learning features of eukaryotic proteins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available