4.5 Article

The diffusion limit of transport equations derived from velocity-jump processes

Journal

SIAM JOURNAL ON APPLIED MATHEMATICS
Volume 61, Issue 3, Pages 751-775

Publisher

SIAM PUBLICATIONS
DOI: 10.1137/S0036139999358167

Keywords

aggregation; chemotaxis equations; diffusion approximation; velocity-jump processes; transport equations

Ask authors/readers for more resources

In this paper we study the diffusion approximation to a transport equation that describes the motion of individuals whose velocity changes are governed by a Poisson process. We show that under an appropriate scaling of space and time the asymptotic behavior of solutions of such equations can be approximated by the solution of a diffusion equation obtained via a regular perturbation expansion. In general the resulting diffusion tensor is anisotropic, and we give necessary and sufficient conditions under which it is isotropic. We also give a method to construct approximations of arbitrary high order for large times. In a second paper (Part II) we use this approach to systematically derive the limiting equation under a variety of external biases imposed on the motion. Depending on the strength of the bias, it may lead to an anisotropic diffusion equation, to a drift term in the flux, or to both. Our analysis generalizes and simplifies previous derivations that lead to the classical Patlak-Keller-Segel Alt model for chemotaxis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available