4.8 Article

Routes to nonsequential double ionization

Journal

PHYSICAL REVIEW LETTERS
Volume 85, Issue 18, Pages 3781-3784

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevLett.85.3781

Keywords

-

Ask authors/readers for more resources

A method is proposed for the calculation of the S matrix for many-electron processes in intense-laser atom physics, in close analogy to the strong-field approximation for one-electron processes. Given a scenario of how some process evolves, corresponding approximations to the classical action are made which allow for the evaluation of the quantum-mechanical S matrix. The method is applied to the distribution of the total electronic momentum in nonsequential double ionization, and the results are compared to recent measurements. Good agreement is obtained for neon for a rescattering scenario. There is no comparable agreement for helium and argon, and possible alternative scenarios are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available