4.7 Article

Identifying cancer-related microRNAs based on gene expression data

Journal

BIOINFORMATICS
Volume 31, Issue 8, Pages 1226-1234

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/bioinformatics/btu811

Keywords

-

Funding

  1. Strategic Priority Research Program of the Chinese Academy of Sciences [XDB13040700]
  2. National Natural Science Foundation of China [91130032, 61103075]
  3. Innovation Program of Shanghai Municipal Education Commission [13ZZ072]
  4. Shanghai Pujiang Program [13PJD032]

Ask authors/readers for more resources

Motivation: MicroRNAs (miRNAs) are short non-coding RNAs that play important roles in post-transcriptional regulations as well as other important biological processes. Recently, accumulating evidences indicate that miRNAs are extensively involved in cancer. However, it is a big challenge to identify which miRNAs are related to which cancer considering the complex processes involved in tumors, where one miRNA may target hundreds or even thousands of genes and one gene may regulate multiple miRNAs. Despite integrative analysis of matched gene and miRNA expression data can help identify cancer-associated miRNAs, such kind of data is not commonly available. On the other hand, there are huge amount of gene expression data that are publicly accessible. It will significantly improve the efficiency of characterizing miRNA's function in cancer if we can identify cancer miRNAs directly from gene expression data. Results: We present a novel computational framework to identify the cancer-related miRNAs based solely on gene expression profiles without requiring either miRNA expression data or the matched gene and miRNA expression data. The results on multiple cancer datasets show that our proposed method can effectively identify cancer-related miRNAs with higher precision compared with other popular approaches. Furthermore, some of our novel predictions are validated by both differentially expressed miRNAs and evidences from literature, implying the predictive power of our proposed method. In addition, we construct a cancer-miRNA-pathway network, which can help explain how miRNAs are involved in cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available