4.7 Article

E-MEM: efficient computation of maximal exact matches for very large genomes

Journal

BIOINFORMATICS
Volume 31, Issue 4, Pages 509-514

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/bioinformatics/btu687

Keywords

-

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC) [R3143A01]

Ask authors/readers for more resources

Motivation: Alignment of similar whole genomes is often performed using anchors given by the maximal exact matches (MEMs) between their sequences. In spite of significant amount of research on this problem, the computation of MEMs for large genomes remains a challenging problem. The leading current algorithms employ full text indexes, the sparse suffix array giving the best results. Still, their memory requirements are high, the parallelization is not very efficient, and they cannot handle very large genomes. Results: We present a new algorithm, efficient computation of MEMs (E-MEM) that does not use full text indexes. Our algorithm uses much less space and is highly amenable to parallelization. It can compute all MEMs of minimum length 100 between the whole human and mouse genomes on a 12 core machine in 10 min and 2 GB of memory; the required memory can be as low as 600 MB. It can run efficiently genomes of any size. Extensive testing and comparison with currently best algorithms is provided.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available