4.3 Article Proceedings Paper

Calcium-mediated proteolytic damage in white matter of hydrocephalic rats?

Journal

Publisher

AMER ASSN NEUROPATHOLOGISTS INC
DOI: 10.1093/jnen/59.11.946

Keywords

axon; calpain; hydrocephalus; kaolin; proteolytic enzyme

Ask authors/readers for more resources

Hydrocephalus is a pathological dilatation of the cerebrospinal fluid (CSF)-containing ventricles of the brain. Damage to periventricular white matter is multifactorial with contributions by chronic ischemia and gradual physical distortion. Acute ischemic and traumatic brain injuries are associated with calcium-dependent activation of proteolytic enzymes. We hypothesized that hydrocephalus is associated with calcium ion accumulation and proteolytic enzyme activation in cerebral white matter Hydrocephalus was induced in immature and adult rats by injection of kaolin into the cisterna magna and several different experimental approaches were used. Using the glyoxal bis (2-hydroxyanil) method, free calcium ion was detected in periventricular white matter at sites of histological injury. Western blot determinations showed accumulation of calpain I (mu -calpain) and immunoreactivity for calpain I was increased in periventricular axons of young hydrocephalic rats. Proteolytic cleavage of a fluorogenic calpain substrate was demonstrated in white matter. Immunoreactivity for spectrin breakdown products was detected in scattered callosal axons of young hydrocephalic rats. The findings support the hypothesis that periventricular white matter damage associated with experimental hydrocephalus is due, at least in part, to calcium-activated proteolytic processes. This may have implications for supplemental drug treatments of this disorder.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available