4.7 Article

Fast and sensitive mapping of bisulfite-treated sequencing data

Journal

BIOINFORMATICS
Volume 28, Issue 13, Pages 1698-1704

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/bioinformatics/bts254

Keywords

-

Funding

  1. LIFE
  2. BMBF through ICGC MMML-Seq [01KU1002J]
  3. European Union
  4. European Regional Development Fund (ERDF)
  5. Free State of Saxony

Ask authors/readers for more resources

Motivation: Cytosine DNA methylation is one of the major epigenetic modifications and influences gene expression, developmental processes, X-chromosome inactivation, and genomic imprinting. Aberrant methylation is furthermore known to be associated with several diseases including cancer. The gold standard to determine DNA methylation on genome-wide scales is 'bisulfite sequencing': DNA fragments are treated with sodium bisulfite resulting in the conversion of unmethylated cytosines into uracils, whereas methylated cytosines remain unchanged. The resulting sequencing reads thus exhibit asymmetric bisulfite-related mismatches and suffer from an effective reduction of the alphabet size in the unmethylated regions, rendering the mapping of bisulfite sequencing reads computationally much more demanding. As a consequence, currently available read mapping software often fails to achieve high sensitivity and in many cases requires unrealistic computational resources to cope with large real-life datasets. Results: In this study, we present a seed-based approach based on enhanced suffix arrays in conjunction with Myers bit-vector algorithm to efficiently extend seeds to optimal semi-global alignments while allowing for bisulfite-related substitutions. It outperforms most current approaches in terms of sensitivity and performs time-competitive in mapping hundreds of millions of sequencing reads to vertebrate genomes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available